- 24. A saturated solution is at equilibrium and contains the maximum concentration of solute. But the actual concentration of dissolved solute may be high or low, depending on the solubility. - 25. soluble: greater than 1 g/100 g water; insoluble: less than 0.1 g/100 g water; slightly soluble: between these limits - 26. Ion concentration is very low. - **27.** If the ion product is less than K_{sp} , the solution is unsaturated and precipitation will not occur. If the ion product is greater than K_{sp} , precipitation will occur until the ion concentrations decrease to equilibrium values. - **28.** 7.14×10^{-11} - **29. a.** 1.1×10^{-10} **b.** 5.06×10^{-5} - **30.** 2.8×10^{-3} mol/L - **31. a.** 7.1×10^{-7} mol/L **b.** 6.3×10^{-11} mol/L - **32. a.** $PbSO_4(s) \rightleftharpoons Pb^{2+}(aq) + SO_4^{2-}(aq)$ **b.** $K_{sp} = [Pb^{2+}][SO_4^{2-}]$ - **33.** 7.69×10^{-46} - **34.** 3.1×10^{-7} mol/L - 35. No precipitate will form. - 36. A precipitate of AgCl will form. - **37.** A precipitate of Fe(OH)₃ will form. - **38. a.** $CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$ - **b.** $K_{sn} = [Ca^{2+}][CO_3^{2-}]$ - **39.** 1.3×10^{-26} mol/L: 8 ions - 40. 1.6 - **41.** 5.2×10^{-7} mol/L - **42.** 8.7×10^{-6} mol/L - **43.** The solubility is 6.1 × 10⁻⁸ mol/L. The fluoridation produces a lowered solubility, which protects tooth coamel. Answers will vary - **31.** Use the K_{sp} values given in **Table 3** to evaluate the solubility of each of the following in moles per liter. - a. AgBr - b. CoS - **32.** Complete each of the following relative to the reaction that occurs when 25.0 mL of 0.0500 M Pb(NO₃)₂ is combined with 25.0 mL of 0.0400 M Na₂SO₄ if equilibrium is reached at 25°C. - a. Write the solubility equilibrium equation at 25°C. - b. Write the solubility equilibrium expression for the net reaction. - **33.** The ionic substance T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of T_3U_2 is 3.8×10^{-10} mol/L. What is the value of the solubility product constant? - **34.** A solution of AgI contains 2.7×10^{-10} mol/L Ag⁺. What is the maximum I⁻ concentration that can exist in this solution? - **35.** Calculate whether a precipitate will form if 0.35 L of 0.0044 M Ca(NO₃)₂ and 0.17 L of 0.000 39 M NaOH are mixed at 25°C. (See **Table 3** for K_{sp} values.) (Hint: See Sample Problem D.) - **36.** Determine whether a precipitate will form if 1.70 g of solid AgNO₃ and 14.5 g of solid NaCl are dissolved in 200. mL of water to form a solution at 25°C. - **37.** If 2.50×10^{-2} g of solid Fe(NO₃)₃ is added to 100. mL of a 1.0×10^{-4} M NaOH solution, will a precipitate form? ## MIXED REVIEW - **38.** Calcium carbonate is only slightly soluble in water. - a. Write the equilibrium equation for calcium carbonate in solution. - b. Write the solubility product constant expression, K_{sp} , for the equilibrium in a saturated solution of CaCO₄. - Calculate the concentration of Hg²⁺ ions in a saturated solution of HgS(s). How many Hg²⁺ - **40.** Calculate the equilibrium constant, *K*, for the following reaction at 900°C. - $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$ The components were analyzed, and it was found that $[H_2] = 0.061 \text{ mol/L}$, $[CO_2] = 0.16 \text{ mol/L}$, $[H_2O] = 0.11 \text{ mol/L}$, and [CO] = 0.14 mol/L. - **41.** A solution in equilibrium with solid barium phosphate is found to have a barium ion concentration of 5.0×10^{-4} M and a K_{sp} of 3.4×10^{-23} . Calculate the concentration of phosphate ion. - **42.** At 25°C, the value of *K* is 1.7×10^{-13} for the following reaction. - $2N_2O(g) + O_2(g) \longrightarrow 4NO(g)$ It is determined that $[N_2O] = 0.0035$ mol/L and $[O_2] = 0.0027$ mol/L. Using this information, what is the concentration of NO(g) at equilibrium? - 43. Tooth enamel is composed of the mineral hydroxyapatite, $Ca_5(PO_4)_3OH$, which has a $K_{\mu\nu}$ of 6.8×10^{-37} . The molar solubility of hydroxy apatite is 2.7×10^{-5} mol/L. When hydroxyapatite is reacted with fluoride, the OH⁻ is replaced with the F⁻ ion on the mineral, forming fluorapatite, $Ca_5(PO_4)_3F$. (The latter is harder and less susceptible to cavities.) The $K_{\mu\nu}$ of fluorapatite is 1×10^{-60} . Calculate the molar and ubility of fluorapatite in water. Given your calculations, can you support the fluoridation of drinking water? - **44.** Determine if a precipitate will form when 0.96 g Na₂CO₃ is combined with 0.20 g Hallr₁ in a 10. L solution $(K_{sp} = 2.8 \times 10^{-9})$. - **45.** For the formation of ammonia, the equilibrium constant is calculated to be 5.2×10^{-5} at 25° C After analysis, it is determined that $[N_2] = 2.00$ M and $[H_2] = 0.80$ M. How many grams of ammonia are in the 10. L reaction vessel at equilibrium? Use the following equilibrium equation $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ ## CRITICAL THINKING Relating Ideas Let s equal the solubility, in mol/L, of AB₃. In terms of s, what is the molar concentration of A2 of B2 What is the A₂₀ of 47. Predicting Outcomes an automobile engine, in from oxygen and nitrogenajor air pollutant. High those found in a combustor the following reaction $N_2(g) + O_2(g)$ K for the reaction is 0.01 of N_2 , 0.1 mol of O_2 , and placed in a 1.0 L vessel is reaction will be favored. ## USING THE - 48. An equilibrium system he of the blood. Review the dioxide-bicarbonate ion Group 14 of the Element answer the following. - a. Write the equation for system that responds a concentration. - b. Use Le Châtelier's pri hyperventilation affer - e. How does this system acid is added? - 49. The reactions used to sor transition metal ions ofte of precipitates. Review the transition metals in the / that information and Tab minimum concentration aduce a precipitate that est Zn. Assume enough suffit to the unknown solution duce a sulfide ion concentration and the concentr ## RESEARCH 50: Find photos of several seand stalaction in various equilibrium processes in of stalaction and stalactions.