ECTION REVIEW

- 1. How are oxidation numbers assigned?
- Label each of the following half-reactions as either an oxidation or a reduction half-reaction:

$$\mathbf{a.} \ \mathbf{Br}_2 + 2e^- \xrightarrow{\cdot} 2\mathbf{Br}^{-1}$$

$$b_1$$
 Na \longrightarrow Na⁺ + e^-

$$\epsilon$$
, $2Cl^{-} \longrightarrow Cl_{2} + 2e^{-}$

d.
$$Cl_2 + 2e^- \longrightarrow 2Cl^-$$

$$e_i \stackrel{i1}{Na^+} + e^- \longrightarrow \stackrel{0}{Na}$$

$$\text{f. } \stackrel{0}{\text{fe}} \longrightarrow \stackrel{+2}{\text{Fe}^{2+}} + 2e^-$$

$$\mathbf{g}_1 \xrightarrow{12} C \mathbf{u}^{2+} + 2e^- \longrightarrow C \mathbf{u}$$

h,
$$Fe^{3+} + e^- \longrightarrow Fe^{2+}$$

Which of the following equations represent redox reactions?

$$a_1 \ 2KNO_3(s) \longrightarrow 2KNO_2(s) + O_2(g)$$

$$\mathbf{b}_1 \operatorname{H}_2(g) + \operatorname{CuO}(s) \longrightarrow \operatorname{Cu}(s) + \operatorname{H}_2\operatorname{O}(l)$$

c. NaOH(
$$aq$$
) + HCl(aq) \longrightarrow NaCl(aq) + H₂O(l)

d.
$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$

e.
$$SO_3(g) + H_2O(l) \longrightarrow H_2SO_4(aq)$$

 For each redox equation identified in the previous question, determine which element is oxidized and which is reduced.

Critical Thinking

 ANALYZING INFORMATION Use the following equations for the redox reaction between aluminum metal and sodium metal to answer the questions below.

$$\begin{array}{c}
0 \\
3 \text{ Na} \longrightarrow 3 \text{ Na}^+ + 3e^-
\end{array}$$
 (oxidation)

$$Al^{3+} + 3e^{-} \longrightarrow Al$$
 (reduction)

$$\frac{0}{3 \text{ Na} + \text{Al}^{3+}} \xrightarrow{+3} \frac{1}{3 \text{ Na}^{+}} \xrightarrow{0} \text{ (redox reaction)}$$

- **a.** Explain how this reaction illustrates that charge is conserved in a redox reaction.
- Explain how this reaction illustrates that mass is conserved in a redox reaction.
- Explain why electrons do not appear as reactants or products in the combined equation.